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APPROXIMATE TREATMENT OF DENSITY GRADIENTS
IN RAYLEIGH-TAYLOR INSTABILITIES*
Karnig 0. Mikaelian
Lawrence Livermore National Laboratory
University of California

Livermore, California 94550

Abstract

We present an approximate method, based on a moment equation to derive
explicit analytic formulas for the growth rate of Rayleigh-Taylor
instabilities in fluids with density gradients. We illustrate with several
examples and compare the results with our earlier method of treating a
continuous density profile as a large number of fluid layers. The emphasis is

on obtaining simple analytic formulas for the largest growth rate;

*Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.



I. INTRODUCTION
The Rayleigh-Taylor (RT) 1nstab111ty]’2 occurs at the interface of two
fluids subjected to an acceleration directed from the lower to the higher
density fluid. The classical case refers to the density profile

P y<o0

o(y) =

with Py < Pps and a constant acceleration § directed from °y to Pye

Perturbations at the interface y = 0 grow exponentially in time with the

classical rate

92 P] ] (2)

Yclassical = [ oy T 07

where k = 2%/2, 2 = wavelength of perturbation.

Interest in the RT instability has been recently revived because of its
important effect in Inertial Confinement Fusion3'4 (ICF). Imperfections on
the surface of a shell can grow large and cause the shell to break-up or to

4 5

mix with the DT fuel. A number of calculations’ and experiments™ have

shown that ablation tends to suppress the growth rate. Density gradients
occur naturally in these calculations and experiments, and it is weH-know_n6
that density gradients also have the effect of reducing the growth rate of RT
instabilities, particularly at short wavelengths. The fact that the shell has
a finite thickness also tends to suppréss the RT instability, in this case at
longer wavelengths.
Earlier we presented7 a mefhod for calculating the growth rates in a

system which consists of any number N of stratified fluids. While that method

is adequate for the study of shells of finite thickness and arbitrary density



profiles, it does not yield simple closed-form expressions except in a few
simple cases with N < 5. Continuous density profiles, in particular, are
approximated by a large number N of fluid layers, and since the method invokes
finding the eigenvalues of a (N-1) x (N-1) matrix, no analytic form can be

written down.

Of course in most (practically all) cases there is no such analytic
form. However, we found it useful to derive approximate analytic formulas
based on a moment equation, and to check them against our earlier method.
These formulas are useful as a simple and quick estimate of growth rates as
functions of density profile and perturbation wavelength.

This investigation began when we discovered that the result presented in
Ref. 6 differed from the result that one obtains using an equation derived by
Chandrasekhar:8 the two results agree in the long wavelength limit but
disagree, by a factor of 2, in the short wavelength 1imit. We found that
these were special cases of a more general equation that can be appropriately
called a moment equation.

In the rest of this paper we present the general moment equation, apply

it to several density profiles, and make some concluding remarks.



II. MOMENT EQUATION: DERIVATION AND DISCUSSION
Given a density profile p(y) one finds the growth rate(s) y by

solving the second-order differential equation8 (D = {kﬂ

2
D(pDW) +5-§— WDp - kZpW = 0 (3)
Y

subject to appropriate boundary conditions. W(y) is an eigenfunction
associated with y and, in general, there are infinitely many growth rates
and associated eigenfunctions. In deriving Eq. (3) the assumptions of
linearity, incompressibility, and the absence of viscosity, surface tension,
and heat transfer are made (see Ref. 8).

Since Eq. (3) can be solved analytically for only a limited number of
density profiles, we must use approximation techniques. Multiplying Eq. (3)
by W" and integrating over y we obtain

ﬁ ™ ! Dpdy

= _ . (4)
gk2 kzlpwn+1dy + m!”m-]p(DW)zdy

The integration is over -= < y < = and we have thrown away "surface terms"
pﬂmﬂu evaluated at y = +=. The exponent m is taken to be a non-negative

number, but not necessarily an integer. We refer to Eq. (4) as the moment

equation.
Eq. (4) reduces to

2
Y- . SWDpdy (5
g fWpay (5)
for m = 0 and

Yoo aledy " (6)
773 2
gk?  K2soWldy + so(DW)2dy

form=1.



Eq. (5) shows that there is an upper bound to the growth rate in the

general class of continuous density profiles with no free surfaces:

2 (De)pax
R R ()

where (Dp)max is the max slope of the profile (finite because p is
continuous) and Pmin is the minimum density (non-zero because there are no
free surfaces). Eq. (7) is significant because it is independent of k and it
shows that the growth rate in such density profiles remains finite even in the
limit of very short wavelength: compare Eq. (7) with Eq. (2) where y + = as
k = 2n/A » =,

Clearly Eq. (4) will yield the same y for any m as long as the exact W
is used. When an approximate W is used then y depends on m, which we
indicate by [m]*

In the rest of this paper we choose W

classica] 35 our approximate

eigenfunction W in all cases:

= -k1y-y*i
|"classica] e (8)

where y* denotes the location of the peak of the eigenfunction (y* = 0 for the
profile of Eq. (1)). An important consideration was its simplicity, since we
shall integrate over it. Second, it has the proper behaviour if

p(y) + constant as y » +=. As we will see in our applications, the

relatively simple expressions that we derive using Ed. (8) agree quite well
with the numerical results where a large number N is used to simulate each
particular density profile.

It is straightforward to show that wc 1 cannot be an exact

lassica
eigenfunction for continuous density profiles, and hence the answer will



depend on m. We can, however._derive a simple relation between Y[o] and
[m] valid for all density profiles. Since "classical satisfies

W'(k) = W(mk) and (DW)2 = k2w2, 1t follows that
vEn(K) = gy vgp((m + 1K) (9)

so we need to calculate only [0]*

If we were to insist that y be an exact expression for some density
profile and hence be independent of m, Eq. (9) shows that this is possible
only if 72 = kF(p) where F is an arbitrary functional of p independent
of k. Indeed, the classical y has exactly this form, which is not |
surprising since Eq. (8) is the exact eigenfunction for that density profile.
The form 72 = kF(p), however, violates Eq. (7) which sets an upper bound
for the growth rate independent of k. This contradiction is only a reflection
of the fact that W j.ccjca 1S Not an exact eigenfunction for continuous
density profiles, and we will indeed find that vy depends on m, and the bound
Eq. (7) is obeyed (when there are no free surfaces).

We found that the moment equation with m = 0, Eq. (5), gave a better
answer than the higher m equations, particularly at short wavelengths. This
is perhaps due to the presence of the (DH)2 term in the general moment
equation. That term is absent only for m = 0. We know that the slope
7 cannot be correct because it is not continuous: "c]assical

D¥crassica
has a cusp at y = y* while W, .., and DW .. . must be continuous if the

7

density profile p(y) is continuous.

We now turn to applications.



III. APPLICATIONS

A. Constant + Exponential Density Profile

Our first application is the density profile considered in Ref. 6:

(v) et as (10)
oLyl = -
pz-%cpe By y>0

where &p = Py = Pye Unlike the purely exponential density profile,
this one cannot be solved analytically. Before using wc]assica] to estimate
the growth rate, we used our earlier method with N = 52 to simulate the above
density profile and calculate the "exact” eigenfunctions and eigenvalues
associated with the largest growth rates. Fig. 1 shows these eigenfunctions
for k = 4, 8, 16. The density profile is also shown in Fig. 1: we have set
Py = 1, Py = 20, and 8 = 4.

We see that all the eigenfunctions peak in the y < 0 region and get
more localized as k increases. To obtain a simple analytic expression,

however, we shall use W 1 always peaking at y = 0, i.e., Eq. (8) with

classica
y*=0. Form=0 we find

2
g k+8 Py + 2

which agrees with the expression derived in Ref. 6. Using Eq. (9) we find

that the higher moment equations yield

2
T[m] _ k8 P = P
g -k(ﬁ+]y+3<92+p]>' (]2)



While in the 1imit k + 0 both Eq. (11) and Eq. (12) reduce to the same

classical expression in the 1imit k + =

2
Mol , ,(f2=
g "P\%-n (13)
while
) _
Y
L (14)
"[o]

The factor of 2 difference mentioned in our Introduction can be traced to
using the moment equation withm = 0 or m = 1. The m = 1 equation can be
found in Ref. 8 including surface tension and viscosity.

In Fig. 2 we compare the growth rates y/v/G calculated in three
different ways: our earlier method with N = 52, and the present method of
using the momeﬁt equation withm =0 and m = 1. Clearly m = 0 comes closer to
the N = 52 result. The deviation at larger k which persists even for m = 0 is

probably due to the fact that W t does not peak exactly at y = 0.

exac
However, considering the simplicity of Eq. (11), its description of y over
such a fairly wide range of k is quite satisfactory. A similarly good
agreement was obtained for the density ratio-;g = 2. As far as we know

this is the first time that the accuracy of Eq. (11), first derived in Ref. 6
for this specific density profile, has been checked by a completely different

method.



B. Linear Density Profile

For our next application we chose a linear density profile,

D" Yy« --g-
o(y) = { (o7 * 0)/2 + (o5 - 07)(y/d)  -F<y<$ (15)
P2 YZ%

It is worth reporting that our first choice for the eigenfunction was

Weassica) Peaking at y = y* = 0. However, this gave substantially wrong
answers (too small growth rates) when the density contrast p,/p, was

large. The choice y* = -d/2 resulted in the following expression for the

growth rate

2
Hol. L (16)
1+ Q-e )
92 - P]

which gave very good agreement with our N = 52 simulation of a linear density
profile with p]/pz = 1/20. With hindsight the choice y* = -d/2 is
clearly preferred since this is the location where Dp/p is maximum. While
for long wavelengths this choice does not matter (they all go the classical
limit), for shorter wavelengths it is crucial. Indeed, the "exact"
eigenfunctions obtained by our previous N = 52 method all peak at y = -d/2.
This is shown in Fig. 3 where we plot the density profile and the
eigenfunctions associated with the largest growth rates for k = 4, 8, and 16.
The scale for length is set by d = 1.

In the limit d » 0 or, alternatively, in the long wavelength limit

Eq. (16) reduces to the classical result



Y[o] Py = Py |
&K 0 P27 " (17)

while in the short wavelength 1imit i1t reduces to

2
o] P2 " "
g —k”> _W’l (18)

which can be seen to coincide with Dp/p at y = -d/2. (Note that Dp is not
continous at y = -d/2 and must be obtained by averaging over Dp(y = -d/2 - ¢)
=0 and Dp(y = -d/2 + ¢) = (92 - p])/d, hence the factor 1/2 in Eq. (18)).

It is interesting to point out that if Py = 0 Eq. (16) reduces to
72 = gk. This is in fact an exact result valid for all density profiles with
a frge surface (see Ref. 7). In other words our choice for W happens to
coincide with the exact eigenfunction for that profile if Py = 0.
Consequently this result is independent of m. This would not have been the
case if y* = 0.

If ) # 0 then the growth rates depend on m, and we can use
Equation (9) again to relate the higher moments to m = 0. In Fig. 4 we show
the growth rates calculated for m = 0, m = 1, and for our N = 52 simulation of
a linear density profile with the ratio p]/pz = 1/20. The agreement
between the N = 52 method and Eq. (16) is striking.

Such large density contrasts are of interest in ICF targets. For cases
where the density contrast is not so large, 1.e., py ~ pps Eq. (16)
predicts growth rates that are somewhat too small: Iif Py = 1/2 Py
then T[o] is about 20% smaller than what the N = 52 method predicts at

short wavelengths, A g d/3. There is no problem at long wavelengths. We

-10-



found that this discrepancy is due primarily to the shape of the eigenfunction
rather than the location of its peak: NN=52 still peaks close to y = -d/2

but is broader than the exponentially decreasing "c]assical'

C. Finite Thickness Density Profile

Our last example illustrates a shell of thickness t with density gradient
lengths d] and d2 on either side, as shown in Fig. 5. Assuming that

W= wc]assica] and that it peaks at the location shown in Fig. 5, we find

Ifel ) : (19)
-k(d]+t)]']

gk -kd, -kd,

1+ 29]d]d2k[}92 -e)(1-e )yt (p3-p,)(1 - “)die
As a check note that if Py = py We get back to the previous example.
Similarly if t = = or d2 = », As in the previous example, setting
Py = 0 gives 72 = gk. Since we know that this is an exact result in

this case also, we expect and indeed find Eq. (19) to be a good approximation
if the density contrast pZ/p] is large.

In the very long wavelength limit Eq. (19) reduces to

M) BN B (20)
9K k.0 P37 P

and in the very short wavelength limit

2
o] P2 = Py
g k+-> Zoq ) (21)

These results are consistent with the fact that long wavelength perturbations

probe the density profile at larger distances while short wavelength



perturbations, being more localized, see only a 1imited region of the density
profile, hence the similarity of Eqs. (18) and (21).
In Fig. 6 we plot the growth rates y as functions of k for 4 different

density profiles. These are obtained from our analytic formulas. Profile A
is the classical profile. Profile B shows the effecf of replacing the sudden
density jump of A by a linear density gradient: A and B overlap at long
wavelengths, while at short wavelengths B is considerably more stable than A.
C shows the effect of the finite thickness or, alternatively, the presence of
a free surface, p = 0, on the other side of a shell. Now at short
wavelengths C and B are identical (the free surface is too far to make any
difference), while at longer wavelengths the free surface makes its presence
felt by suppressing the growth rate: Yo < 7p for k £ 1 (the gradient length
d] = 1 is used for scale, and we have set t.l =1, d2 = 0). Finally, profile
D is the case where both t = 0 and d2 = 0, and Fig. 6 shows that while at short
wavelengths B, C, and D all have identical growth rates, at longer wavelengths
D is even more stable. The reason is that by eliminating t we have brought
the stable free surface even closer.

Several special cases can be obtained from Eq. (19). In particular for

d] = d2 = 0, it reduces to

2
o] . ]
gk dy—>10 _ T (22)
g,—0 7 2"1[”2 - * g - pple ]

This is, in fact, the case N = 3: a layer of fluid of density Py and
thickness t between two semi-infinite fluids of densities " and p3e

An explicit expression for the exact growth rates (there are two) was given in

-12-



Ref. 7. Eq. (22) agrees with neither of them except for trivial cases like
py = 0 or p3 = py. The reason is twofold: 1) in general the eigenfunctions
do not peak at the p]/pz interface but somewhere between this and the other
interface, and 2) the eigenfunctions have both an exponentially decreasing as
well as increasing part in the middle layer.

To highlight the difference between our simple analytic formulas and the
exact results, we consider the case Py = 1/2 Py and p3 = 0. Fig. 7 shows 2
density profiles and 4 growth rates: A and B refer to the same density
profile; the curve labelled N = 3 is the exact result while the curve labelled
m = 0 is based on Eq. (22). The agreement is good at short wavelengths, but
bad at long wavelengths. In fact, Eq. (22) becomes negative at k . 0.6 (the
scale is set by t = 1). While there is a stable mode in the exact result
given by 12 = -gk, there is also a second and dominant mode which never
becomes negative.

Curves C and D in Fig. 7 refer to the second density profile where the
p=1to p =2 abrupt transition is replaced by a linear density gradient
of length d] = 1. Curve C is the result of using N = 52 to simulate this
density profile, while D is based on Eq. (19) with Py = 1, Py = 2,

Py = 0, d] =1, t1 =1, d2 = 0. There is fair agreement, within 20%, at short
wavelengths, while at longer wavelengths 7%01 again goes negative,

suggesting that the effect of the stable interface between o = 2 and p = 0

is overestimated in these formulas.

We should point out that the small density contrast po/pq = 2/1
was chosen in Fig. 7 to highlight were Eq. (19) fails. Indeed, for the larger

density contrast used in Fig. 6 we found that Eq. (19) agrees very closely

with the N = 52 results at both long and short wavelengths.

-13-



IV. REMARKS AND CONCLUSIONS

We derived simple, explicit analytic formulas for the growth rate of the
Rayleigh~Taylor instability in a number of density profiles, and compared the
results with our earlier technique. We checked the N = 52 result by comparing
them with N = 27 and N = 77.

In all cases we have focused on the largest growth rate. There are many
growth rates: in the case of finite N, there are N - 1 growth rates, and in
the case of continuous density profiles there are infinitely many growth
rates. While all of them are needed to find out how perturbations grow at
each interface and feed-through from one interface to another.9 the lérgest
growth rate, which dominates at late times, can be used to assess the jmpact
of a particular density profile and/or compare it with another one.

From the examples considered here it appears that the choice of the
classical eigenfunction peaking where Dp/p peaks is a good one, especially
when used in the m = 0 moment equation. One may try other functions or search
for the one that maximizes 1] (this procedure is equivalent to solving
the original differential equation--see Ref. 8), but the expressions quickly
become too complicated, espeically when one tries to take into account the
fact that the location of the peak is a function of both density and
wavelength, as in Fig. 1.

We end with a brief summary of the present experimental situation:
experiments with fasers5 show that growth rates are reduced by a factor of
about 2 from their classical values. However, one cannot separate the effects
of ablation and density gradients. In a more recent clqssica] typé experiment

with 3 fluids, where the acceleration is provided by rockets, 1t was found]o

-14-



that a middle transitional or anti-mix layer of density Py = /3735
suppresses, to some extent, the mix of the two fluids on each side. The
experiments were well into the non-linear regime and cannot be properly
analyzed in terms of a simple linear theory, but they do suggest that density

gradients can be a stabilizing factor in Rayleigh-Taylor instabilities.

This work was supported by the U.S. Department of Energy Contract No.
W-7405-ENG-48.
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FIGURE CAPTIONS
Fig. 1. Constant + exponential density profile (dashed 1ine) and the

eigenfunctions associated with the largest growth rates for k = 4,
8, and 16, calculated with N = 52, The scale is set by 8 = 4.

Fig. 2. The growth rate as a function of wavenumber for the constant +
exponential density profile. The curve labelled N = 52 is obtained
by using 52 fluid layers to represents the density profile (see
Fig. 1 for representative eigenfunctions). The curves labelled m =
0 and m = 1 are the results of the corresponding moment equations.

Fig. 3. Same as Fig. 1 for the linear density profile. The scale is set by
d=1.

Fig. 4. Same as Fig. 2 for the linear density profile.

Fig. 5. Finite thickness density profile with linear gradients between 3
constant densities (see Section III C).

Fig. 6. Growth rates as functions of wavenumber k for 4 different density
profiles (see text).

Fig. 7. Growth rates as functions of wavenumber k for 2 different density

profiles (see text).
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